We devised the L+1-layer divide & conquer approach to leads-to model checking (L+1-DCA2L2MC) and its parallel version, and developed sequential and parallel tools for L+1-DCA2L2MC. In a temporal logic called UNITY, designed by Chandy and Misra, the leads-to temporal connective plays an important role and many case studies have been conducted in UNITY, demonstrating that many systems requirements can be expressed as leads-to properties. Hence, it is worth dedicating to these properties. Counterexample generation is one of the main tasks in the L+1-DCA2L2MC technique that can be optimized to improve its running performance. This article proposes a technique to find all counterexamples at once in model checking with a new model checker. Furthermore, layer configuration selection is essential to make the best use of the L+1-DCA2L2MC technique. This work also proposes an approach to finding a good layer configuration for the technique with an analysis tool. Some experiments are conducted to demonstrate the power and usefulness of the two optimization techniques, respectively. Moreover, our sequential and parallel tools are compared with SPIN and LTSmin model checkers, showing a promising way to mitigate the state space explosion and improve the running performance of model checking when dealing with large state spaces.
Information
A Layered and Parallelized Method of Eventual Model Checking
Termination or halting is an important system requirement that many systems should satisfy and can be expressed in linear temporal logic as eventual properties. We devised a divide-and-conquer approach to eventual model checking in order to reduce the state space explosion in model checking. The idea of the technique is to split an original model checking problem for eventual properties into multiple smaller model checking problems and handle each smaller one. Due to the nature of the divide-and-conquer approach, each smaller model checking problem can essentially be tackled independently. Hence, this paper proposes a parallel technique/tool based on a master–worker pattern for the divide-and-conquer approach to model checking eventual properties. We carry out some experiments to show the effectiveness of our parallel technique/tool, which can somewhat enhance the running performance to a certain extent when conducting model checking for eventual properties.
2022
DSA
A Tool for Model Checking Eventual Model Checking in a Stratified Way