
Automated Quantum Protocol Verification Based on Concurrent
Dynamic Quantum Logic

Canh Minh Do

Japan Advanced Institute of Science and Technology (JAIST)

1-8 Asahidai, Nomi, Japan

Presented Online at La Trobe-Kyushu Joint Seminar on Mathematics for Industry
July 2, 2024

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 1 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 2 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 3 / 38

Introduction

Quantum computing is a rapidly emerging technology that uses the laws of quantum
mechanics to solve complex problems beyond the capabilities of classical computers, such
as Shore’s fast algorithms1 for discrete logarithms and factoring.
Due to radically different principles of quantum mechanics, such as superposition,
entanglement, and measurement, it is challenging to accurately design and implement
quantum algorithms, quantum programs, and quantum protocols.
Therefore, it is crucial to ensure the correctness of quantum systems through verification.

1P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: Proceedings 35th Annual Symposium on
Foundations of Computer Science. 1994.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 4 / 38

Formal Verification of Quantum Programs

Previous Studies of Quantum Program Verification
Quantum Hoare Logic (QHL)2: a quantum counterpart of Hoare Logic
Dynamic Quantum Logic (DQL)3: a quantum counterpart of Dynamic Logic

Problems of Previous Studies
QHL can semi-automatically perform proofs of correctness with a support tool4 implemented
in Coq. Meanwhile, DQL still requires manual proof verification.
In this study, we propose an automatic verification method based on Concurrent Dynamic
Quantum Logic (CDQL), an extended version of Basic Dynamic Quantum Logic (BDQL)5,
for describing concurrent behavior and communication among participants in quantum
protocols.

2Mingsheng Ying. “Floyd–Hoare Logic for Quantum Programs”. In: ACM Trans. Program. Lang. Syst. (2012).
3Alexandru Baltag and Sonja Smets. “Reasoning about Quantum Information: An Overview of Quantum Dynamic Logic”. In: Applied Sciences

(2022).
4Junyi Liu et al. “Formal Verification of Quantum Algorithms Using Quantum Hoare Logic”. In: Computer Aided Verification. 2019.
5Tsubasa Takagi, Canh Minh Do, and Kazuhiro Ogata. “Automated Quantum Program Verification in a Dynamic Quantum Logic”. In: DaLí:

Dynamic Logic – New trends and applications. 2023.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 5 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 6 / 38

Hilbert Spaces

A Hilbert space H usually serves as the state space of a quantum system that is a complex
vector space equipped with an inner product such that each Cauchy sequence of vectors
has a limit.
An n-qubit system is the complex 2n-space C2n , where C stands for the complex plane.
Pure states in the n-qubit systems C2n are unit vectors in 2n-space C2n .
The orthogonal basis called computational basis in the one-qubit system C2 is the set
{|0⟩ , |1⟩} that consists of the column vectors |0⟩ = (1, 0)T and |1⟩ = (0, 1)T , where T

denotes the transpose operator.
In the two-qubit system C4, there are pure states that cannot be represented in the form
|ψ1⟩ ⊗ |ψ2⟩ and called entangled states, where ⊗ denotes the tensor product (more
precisely, the Kronecker product).
For example, the EPR state (Einstein-Podolsky-Rosen state) |EPR⟩ = (|00⟩+ |11⟩)/

√
2 is

an entangled state, where |00⟩ = |0⟩ ⊗ |0⟩ and |11⟩ = |1⟩ ⊗ |1⟩.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 7 / 38

Unitary Operators

A unitary operator is a linear operator U : H → H that satisfies U∗U = UU∗ = I .
Quantum computation is represented by unitary operators (also called quantum gates).
For example, the Hadamard gate H and Pauli gates X , Y , and Z are quantum gates on
the one-qubit system C2 and are defined as follows:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Two typical quantum gates on the two-qubit systems C4 are the controlled-X gate (also
called the controlled-NOT gate) CX and the swap gate SWAP are defined by

CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X ,

SWAP = CX (I ⊗ |0⟩⟨0|+ X ⊗ |1⟩⟨1|)CX ,

where I denotes the identity matrix of size 2 × 2.
Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 8 / 38

Measurement

Measurement is a completely different process from applying quantum gates. Here we
roughly explain specific projective measurements.
For the general definition of projective measurement, see the famous textbook of quantum
computation6.
Observe that P0 = |0⟩⟨0| and P1 = |1⟩⟨1| are projectors, respectively.
After executing the measurement {P0,P1}, a current state |ψ⟩ = c0 |0⟩+ c1 |1⟩ is
collapsed into either P0|ψ⟩

|c0| with probability |c0|2 or into P1|ψ⟩
|c1| with probability |c1|2.

c0|0⟩
|c0| ≈ |0⟩

|ψ⟩

c1|1⟩
|c1| ≈ |1⟩

|c0|2

|c1|2

6Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 9 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 10 / 38

Regular Program

Program Name Meaning

skip Skip Do nothing.

abort Abort Forcing to halt.

a ; b Composition Execute a and then execute b.

a ∪ b Non-deterministic Choices Execute either a or b non-deterministically.

a∗ Iteration Repeat a some finite number of times.

p? Test Confirm that p is whether true or false.

Regular Program = Regular Expression + Test
Conditional/Loop programs can be defined in terms of regular programs

if A then a else b fi = (A? ; a) ∪ (¬A? ; b)
if A1 → a1| . . . |An → an fi = (A1? ; a1) ∪ . . . ∪ (An? ; an)
while A do a od = (A? ; a)∗ ; ¬A?
repeat a until A = a ; (¬A? ; a)∗ ; A?

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 11 / 38

Dynamic Logic

Dynamic Logic = Formulas + Regular Programs + Dynamic Operator [a]
The set L of all formulas and the set Π of all regular programs are defined by the following
simultaneous induction:

L ∋ A :: = p | ¬A | A ∧ A | [a]A,
Π ∋ a :: = skip | abort | π | a ; a | a∗ | a ∪ a | A?,

where p denotes an atomic formula and π denotes an atomic program.
Formula Name Meaning

¬A Negation Not A

A ∧ B Conjunction A and B

[a]A Dynamic Operator It is always A after a is executed

☞ Dynamic Logic is compatible with formal verification because it can express exhaustive
searches.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 12 / 38

Semantics of DQL

For the sake of simplicity, we use regular programs Π− without the iteration operator ∗.

Definition 1
Quantum dynamic frame is a pair (H, v) of a Hilbert space H and a function v from the set
Π0 of all atomic programs to the set U(H) of all unitary operators on H. Here, v is called an
interpretation function of atomic programs.

Definition 2
Quantum dynamic model is a triple (H, v ,V) that consists of a quantum dynamic frame
(H, v) and a function V from the set L0 of all atomic formulas to the set C(H) of all closed
subspaces of H. Here, V is called an interpretation function of atomic formulas.

Quantum logic interprets formulas as closed subspaces.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 13 / 38

Semantics of DQL

For each quantum dynamic model M = (H, v ,V), the function [[]]M : L → C(H) and family
{RM

a : a ∈ Π−} of relations on H are defined by simultaneous induction as follows:
1 [[p]]M = V (p);
2 [[¬A]]M is the orthogonal complement of [[A]]M ;
3 [[A ∧ B]]M = [[A]]M ∩ [[B]]M ;
4 [[[a]A]]M = {s ∈ H : (s, t) ∈ RM

a implies t ∈ [[A]]M for any t ∈ H};
5 RM

skip = {(s, t) : s = t};
6 RM

abort = ∅;
7 RM

π = {(s, t) : (v(π))(s) = t};
8 RM

a;b = {(s, t) : (s, u) ∈ RM
a and (u, t) ∈ RM

b for some u ∈ H};
9 RM

a∪b = RM
a ∪ RM

b ;
10 RM

A? = {(s, t) : P[[A]]M (s) = t}, where P[[A]]M stands for the projection onto [[A]]M .

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 14 / 38

Semantics of DQL

Kripke frames can be constructed from the family {RM
a : a ∈ Π−} of relations on H.

Example 1 (A Kripke frame for a simple quantum program)

S =

{
|00⟩ , |00⟩+ |10⟩√

2
,
|00⟩+ |11⟩√

2
, |11⟩

}
, R = RH(0) ∪ RCX (0,1) ∪ R|0⟩? ∪ R|1⟩?

RH(0) =

{(
|00⟩ , |00⟩+ |10⟩√

2

)}
, RCX (0,1) =

{(
|00⟩+ |10⟩√

2
,
|00⟩+ |11⟩√

2

)}
,

R|0⟩? =

{(
|00⟩+ |11⟩√

2
, |00⟩

)}
, R|1⟩? =

{(
|00⟩+ |11⟩√

2
, |11⟩

)}

|00⟩

|00⟩ |00⟩+|10⟩√
2

|00⟩+|11⟩√
2

|11⟩

H(0) CX (0,1)

|0⟩?

|1⟩?

Figure: Relation R

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 15 / 38

Semantics of DQL

Henceforth, we write (M, s) |= A for s ∈ [[A]]M .
(M, s) |= A if and only if P[[A]]M (s) = s.
☞ There is a bijection between a closed subspace and a projection onto it.

Theorem 1
For any M and s ∈ H, the following holds:

1 (M, s) |= A ∧ B , if and only if (M, s) |= A and (M, s) |= B .
2 (M, s) |= [skip]A if and only if (M, s) |= A.
3 (M, s) |= [abort]A.
4 (M, s) |= [π]A if and only if (M, (v(π))(s)) |= A.
5 (M, s) |= [a ; b]A if and only if (M, s) |= [a][b]A.
6 (M, s) |= [a ∪ b]A if and only if (M, s) |= [a]A ∧ [b]A.
7 (M, s) |= [A?]B if and only if (M,P[[A]]M (s)) |= B .

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 16 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 17 / 38

Motivation

Quantum Teleportation is a quantum communication protocol for teleporting an arbitrary pure
state by sending two bits of classical information.

Alice: |ψ⟩ H

Alice: |0⟩ H

Bob: |0⟩ X Z |ψ⟩

Figure: Quantum Teleportation

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 18 / 38

Motivation

The protocol is described as follows:
1 Preparing Quantum Channel: Alice has the first qubit in a state |ψ⟩ and the second

qubit in the state |0⟩, and Bob has the third qubit in the state |0⟩. After executing
H(1) ; CX(1, 2), Alice’s second qubit and Bob’s qubit are entangled.

2 Alice’s Action 1: Alice executes CX(0, 1) to her qubits.
3 Alice’s Action 2: Alice executes H(0) to her qubit.
4 Alice’s Action 3: Alice measures her second qubit in the computational basis {|0⟩ , |1⟩},

and then sends the outcome (either 0 or 1) to Bob via the channel c12.
5 Alice’s Action 4: Alice measures her first qubit in the computational basis {|0⟩ , |1⟩}, and

then sends the outcome (either 0 or 1) to Bob via the channel c02.
6 Bob’s Action 1: If Bob receives the information 0 via c12, then he does nothing.

Otherwise, Bob receives the information 1 via c12 and then he executes X(2).
7 Bob’s Action 2: If Bob receives the information 0 via c02, then he does nothing.

Otherwise, Bob receives the information 1 via c02 and then he executes Z(2).
Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 19 / 38

Motivation

In this protocol, the two processes (Alice’s actions and Bob’s actions) are executed
concurrently. For example, one schedule for this protocol is executing (1), (2), (3), (4),
(6), (5), (7) in this order, and another schedule is executing (1), (2), (3), (4), (6), (7), (5)
in this order.
For this reason, to verify the correctness of Quantum Teleportation executed concurrently,
we need to carefully define the parallel composition ∥ with communication. Formally, the
program of Quantum Teleportation is described as follows:

teleport = H(1) ; CX(1, 2) ; (Alice ∥ Bob),
Alice = CX(0, 1) ; H(0)

; if p(1, |0⟩) then c12 <: 0 else c12 <: 1 fi
; if p(0, |0⟩) then c02 <: 0 else c02 <: 1 fi,

Bob = ((c12 :> 1 ; X(2)) ∪ c12 :> 0)
; ((c02 :> 1 ; Z(2)) ∪ c02 :> 0).

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 20 / 38

Syntax of CDQL

We use the idea of parallel composition from the Algebra of Communicating Processes
(ACP)7 to express concurrent behavior and communication. Similar to ACP, we define ∥
using the left merge operator T and the communication operator |.
The set L̂ of all formulas in CDQL and the set Π̂ of all star-free concurrent regular
programs are generated by simultaneous induction as follows:

L̂ ∋ A ::= p | ¬A | A ∧ A | [a]A,

Π̂ ∋ a ::= skip | abort | π | a ; a | a ∪ a | A? | a ∥ a | a T a | (a | a),

where p ∈ L0 and π ∈ Π0.

7Wan Fokkink. Introduction to process algebra. Springer, 1999.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 21 / 38

Merge Operators

The parallel composition operator ∥ should satisfy

a ∥ b = (a T b) ∪ (b T a) ∪ (a | b).

Let c <: d and c :> d be atomic programs, representing sending and receiving a datum d
via a channel c .
We suppose that the result of the simultaneous execution of c <: d and c :> d is always
skip, and that of the other atomic programs is always abort as follows:

π1 | π2 = π2 | π1 = γ(π1, π2) =

{
skip (π1 = c <: d and π2 = c :> d for some c , d),

abort (otherwise).

where γ is called the communication function.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 22 / 38

Properties of Merge Operators

There are several other properties that the merge operators should satisfy as follows:

Definition 4.1

Assume that c :> d , c <: d ∈ Π0 for channels c and data d . The following conditions are
imposed on the merge operators.

1 a ∥ b = ((a T b) ∪ (b T a)) ∪ (a | b),
2 skip T a = a,
3 abort T a = abort,
4 π T a = π ; a,
5 (skip ; a) T b = a ∥ b,
6 (abort ; a) T b = abort,
7 (π ; a) T b = π ; (a ∥ b),
8 . . . (see our paper for more details)

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 23 / 38

How Merge Operators Handle Concurrent Behavior and Communication

Example 2

Let us consider the program (π1 ; a) ∥ (π2 ; b) as follows:

(π1 ; a) ∥ (π2 ; b) = ((π1 ; a) T (π2 ; b)) ∪ ((π2 ; b) T (π1 ; a)) ∪ ((π1 ; a) | (π2 ; b))
(By Definition 4.1 (1))

= (π1 ; (a ∥ (π2 ; b))) ∪ (π2 ; (b ∥ (π1 ; a))) ∪ ((π1 | π2) ; (a ∥ b))
(By Definition 4.1 (7) and (21))

In Example 2, the program can choose to execute nondeterministically among π1, π2, and
π1 | π2.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 24 / 38

CDQL - A Conservative Extension of BDQL

Theorem 2

CDQL is a conservative extension of BDQL: for any M, s ∈ S , A ∈ L̂, there exists B ∈ L such
that (M, s) |= A if and only if (M, s) |= B .

Proof.
See our paper for more details.

We can transform CDQL models into BDQL models and use the semantics of BDQL to
verify BDQL models without the necessity to define the semantics of CDQL.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 25 / 38

Encapsulation Operator

We introduce a unary operator ∂H called an encapsulation operator, which is used to
enforce communication in programs.

Definition 4.2

More formally, for each H ⊆ Π0, the encapsulation operator ∂H is the unary function on Π
defined as follows:

1 ∂H(π) =

{
abort (π ∈ H)

π (π /∈ H)
,

2 ∂H(skip) = skip,
3 ∂H(abort) = abort,
4 ∂H(a ; b) = ∂H(a) ; ∂H(b),
5 ∂H(a ∪ b) = ∂H(a) ∪ ∂H(b),
6 ∂H(A?) = A?.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 26 / 38

Encapsulation Operator

Example 3

Let us consider the program ∂H((π1 ; a) ∥ (π2 ; b)) as follows:

∂H((π1 ; a) ∥ (π2 ; b))

= ∂H((π1 ; (a ∥ (π2 ; b))) ∪ (π2 ; (b ∥ (π1 ; a))) ∪ ((π1 | π2) ; (a ∥ b))) (By Example 2)
= ∂H(π1 ; (a ∥ (π2 ; b))) ∪ ∂H(π2 ; (b ∥ (π1 ; a))) ∪ ∂H((π1 | π2) ; (a ∥ b)) (By Definition 4.2 (5))
= (∂H(π1) ; ∂H(a ∥ (π2 ; b))) ∪ (∂H(π2) ; ∂H(b ∥ (π1 ; a))) ∪ (∂H(π1 | π2) ; ∂H(a ∥ b))

(By Definition 4.2 (4))

In Example 3, if π1 and π2 are atomic communication programs, ∂H(π1) and ∂H(π2) will
become abort; and ∂H(π1 | π2) will become either skip or abort.
The encapsulation operator can effectively limit the number of interleavings with
communication arising from concurrency under verification.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 27 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 28 / 38

Standard Interpretation

Now we discuss the verification of concrete quantum programs based on CDQL
Fix Π0 and L0 as follows (N denotes natural numbers and C denotes complex numbers):

Π0 = {H(i), X(i), Y(i), Z(i), CX(i , j), SWAP(i , j) : i , j ∈ N, i ̸= j}
∪ {c <: d , c :> d : c ∈ C , d ∈ D},

L0 = {p(i , |ψ⟩), p(i , i + 1, |Ψ⟩) : i ∈ N, |ψ⟩ ∈ C2, |Ψ⟩ ∈ C4},

Standard interpretation v̄ : Π0 → U(C2n) for atomic programs

v̄(H(i)) = I⊗i ⊗ H ⊗ I⊗n−i−1, v̄(X(i)) = I⊗i ⊗ X ⊗ I⊗n−i−1,

v̄(Y(i)) = I⊗i ⊗ Y ⊗ I⊗n−i−1, v̄(Z(i)) = I⊗i ⊗ Z ⊗ I⊗n−i−1,

v̄(CX(i , j)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + (I⊗i ⊗ |1⟩⟨1| ⊗ I⊗n−i−1)(I⊗j ⊗ X ⊗ I⊗n−j−1),

v̄(SWAP(i , j)) = v̄(CX(i , j) ; CX(j , i) ; CX(i , j)),

where I⊗i =

i︷ ︸︸ ︷
I ⊗ · · · ⊗ I .

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 29 / 38

Standard Interpretation

Standard interpretation V : L0 → C(C2n) for atomic formulas

V (p(i , |ψ⟩)) = C2i ⊗ span{|ψ⟩} ⊗ C2n−i−1
,

V (p(i , i + 1, |Ψ⟩)) = C2i ⊗ span{|Ψ⟩} ⊗ C2n−i−2
,

Conditional quantum programs for quantum tests in CDQL:

if A then a else b fi = (A? ; a) ∪ (¬A? ; b).

☞ considering binary projective measurements

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 30 / 38

Quantum Teleportation

Alice: |ψ⟩ H

Alice: |0⟩ H

Bob: |0⟩ X Z |ψ⟩

teleport = H(1) ; CX(1, 2) ; ∂H(Alice ∥ Bob),
Alice = CX(0, 1) ; H(0)

; if p(1, |0⟩) then c12 <: 0 else c12 <: 1 fi
; if p(0, |0⟩) then c02 <: 0 else c02 <: 1 fi,

Bob = ((c12 :> 1 ; X(2)) ∪ c12 :> 0)
; ((c02 :> 1 ; Z(2)) ∪ c02 :> 0).

where H = {ci <: 0, ci <: 1, ci :> 0, ci :> 1 : i ∈ {12, 02}}.

The desired property of Quantum Teleportation is that “an arbitrary pure state |ψ⟩ is
correctly teleported.” In CDQL, this property is expressed as:

(M3, |ψ⟩ ⊗ |0⟩ ⊗ |0⟩) |= [teleport]p(2, |ψ⟩).

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 31 / 38

Implementation of CDQL

We extend our support tool for BDQL8 to make a new support tool for CDQL to handle
both BDQL and CDQL models as a one-stop place.
We use Maude, a high-level specification/programming language based on rewriting logic,
for our tool development.

Conservative Extend

BDQL

CDQL-Syntax

Semantics

BDQL-Syntax

Symbolic Reasoning for Quantum Computation

Concurrent
Quantum Protocols

CDQL

Sequential
Quantum Protocols

Conservative Extension

Figure: The architecture of the implementation of CDQL

8Takagi, Do, and Ogata, “Automated Quantum Program Verification in a Dynamic Quantum Logic”.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 32 / 38

Handling Large Interleavings from Concurrency in CDQL

We propose a Lazy Rewriting Strategy to effectively handle large interleavings from
concurrency in CDQL:

Control the transformation process for interleaving enumeration and the verification process
for each interleaving step by step to detect unnecessary interleavings early.
Memorize the previous results of equational simplification for subprograms and reuse the
results to prevent duplicated work if applicable.

To make it more intuitive, let us recall the simple program in Example 3 as follows:

∂H((π1 ; a) ∥ (π2 ; b))

= (∂H(π1) ; ∂H(a ∥ (π2 ; b))) ∪ (∂H(π2) ; ∂H(b ∥ (π1 ; a))) ∪ (∂H(π1 | π2) ; ∂H(a ∥ b))
(By Example 3)

☞ if ∂H(π1), ∂H(π2), or ∂H(π1|π2) is reduced to abort, then its subprogram should not
be handled or rewritten anymore.
☞ In the case of no abort for ∂H(π1), ∂H(π2), or ∂H(π1|π2), the subprogram ∂H(a ∥ b)
are more likely to appear multiple times for the subsequent expansions.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 33 / 38

A Support Tool and Experiment Results

A support tool for CDQL is extended from our previous support tool for BDQL9 to handle
concurrent behavior and communication among participants in quantum protocols.
The implementation is available at https://github.com/canhminhdo/DQL

BDQL Models CDQL Models
Protocol Qubits Rewrite Steps Time Rewrite Steps Time

Quantum Teleportation 3 2,558 1ms 3,431 2ms

Entanglement Swapping 4 4,134 2ms 10,196 5ms

Quantum Secret Sharing 4 6,665 3ms 32,592 20ms

Quantum Relay Scheme 5 13,060 6ms 19,304 12ms

Bidirectional Quantum Teleportation 6 14,683 6ms 25,668 14ms

Two-qubit Quantum Teleportation 6 52,161 35ms 65,828 45ms

Quantum Gate Teleportation 6 56,873 41ms 224,898 144ms

9Takagi, Do, and Ogata, “Automated Quantum Program Verification in a Dynamic Quantum Logic”.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 34 / 38

https://github.com/canhminhdo/DQL

The Power of the Lazy Rewriting Strategy for CDQL Models

A basic version of our support tool does not use the strategy.
A moderate version of our support tool partially uses the strategy without memorization.
An advanced version of our support tool fully uses the strategy.

Basic Moderate Advanced
Protocol Qubits Rewrite Steps Time Rewrite Steps Time Rewrite Steps Time

Quantum Teleportation 3 69,507 16ms 3,761 2ms 3,431 2ms

Entanglement Swapping 4 361,465 107ms 48,513 20ms 10,196 5ms

Quantum Secret Sharing 4 634,699,523 17h 39m 56s 285,482 110ms 32,592 20ms

Quantum Relay Scheme 5 N/A N/A 29,134 12ms 19,304 12ms

Bidirectional Quantum Teleportation 6 1,763,198,792 5d 17h 3m 292,980 117ms 25,668 14ms

Two-qubit Quantum Teleportation 6 948,116,386 1d 13h 47m 117,790 78ms 65,828 45ms

Quantum Gate Teleportation 6 N/A N/A 13,661,654 9,775ms 224,898 144ms

☞ N/A denotes that the experiments could not be completed within one week.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 35 / 38

Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Dynamic Quantum Logic (DQL)

4 Concurrent Dynamic Quantum Logic (CDQL)

5 Implementation & Case Studies

6 Conclusions and Future Work

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 36 / 38

Conclusions and Future Work

We have presented Concurrent Dynamic Quantum Logic (CDQL), a conservative extension
of Basic Dynamic Quantum Logic (BDQL), to formalize and verify quantum protocols,
where concurrent behavior and communication are considered.
We have presented a new support tool for CDQL which is based on the support tool for
BDQL, where both BDQL and CDQL models can be handled.
We have presented the lazy rewriting strategy to handle large interleavings arising from
concurrency in CDQL.
We consider several lines of future work as follows:

Extend both BDQL and CDQL to support probabilistics in their formalizations.
Enhance our logic to support auxiliary variables and some specific data structures like arrays
or queues for formalizing asynchronous messages in CDQL.
Handle iteration to describe infinite behaviors.

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 37 / 38

Thank You!

Canh Minh Do (JAIST) Quantum Protocol Verification in CDQL July 2, 2024 38 / 38

	Introduction
	Basic Notations on Quantum Computation
	Dynamic Quantum Logic (DQL)
	Concurrent Dynamic Quantum Logic (CDQL)
	Implementation & Case Studies
	Conclusions and Future Work

